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I.  INTRODUCTION 

The general objective of this blast valve study is to determine, through 
computational modeling, the suitability of using a fast-acting (blast) valve 
to replace diaphragm-breaking as the means of initiating flow in a large 
shock tube.  In conventional shock tubes, a diaphragm of thin fragile 
plastic or metal sheet is normally used to separate the driver gas from the 
driven gas.  However, a fast-acting valve has distinct advantages over a 
diaphragm, and operationally performs the same role. 

With regard to the diaphragm shock tube, problems include (a) time 
consumptive preparation. Installation, and replacement of the diaphragms, 
(b) the possibility of diaphragm fragments and residue interfering with 
desired flow conditions or damaging models, and (c) the need for artlfical 
bursting techniques (piercers, explosive charges, etc.) to initiate flow at 
some starting conditions.  The number of cycles a diaphragm shock tube can 
be operated per day decreases as the size of the diaphragm increases and 
with added complications such as artificial bursting techniques. 

Conversely, the fast-acting valve has none of these problems.  As 

reported by Sverdrup,- two fast-acting sliding sleeve valves Sverdrup de- 
signed (12 and 16 inches in diameter) were used "hundreds of cycles without 
significant maintenance often 8 to 15 cycles per day." An additional 
advantage of the fast-acting valve if appropriately designed and 
constructed, is its ability to not only start, but stop, and regulate shock 
tube flow for a wide range of operating conditions.  The capability to 
regulate shock tube flow implies that the blast valve's open area versus 
time is a variable that can be altered to produce many desired waveshapes. 

The main operational role of the blast valve or the diaphragm is to 
initiate shock tube flow either by bursting (diaphragm) or by mechanically 
opening (blast valve). The opening times of diaphragms are typically much 
shorter than the opening times of blast valves.  These opening times are 
important because the accelerating phase of the subsequent shock wave motion 
has been attributed to the finite time required for the diaphragm, or by 

Private Communication from Dr. Fritz Oertel, Ballistic Research Laboratory, 
May 1983. 



2-5 
analogy for the blast valve, to open fully.    That is, the opening time of 
either mechanism directly affects the distance required for the shock wave 
to reach its maximum velocity. As the opening time increases, the distance 
to shock formation (defined as attainment of maximum shock velocity) 
increases. Thus a possible disadvantage of blast valves is that they 
require longer distances to achieve shock formation than diaphragms. 

As mentioned earlier, the goal of the remainder of this report is a 
determination of the suitability of a fast-acting (blast) valve to replace 
diaphragm breaking in a large shock tube. The preceding will be achieved by 
(1) validation of a computational diaphragm/blast valve model with 
experimental results and (2) utilization of the computational 
diaphragm/blast valve model with a large shock tube to determine if 
acceptable shock formation distances can be obtained for various blast valve 
opening times and critical operating conditions. 

II.  APPROACH 

This section describes the two phases of this study; a) validation of a 
computational blast valve model with experimental results for a conventional 
shock tube and b) a one-dimensional (1-D) computational study of blast valve 
suitability for the large shock tube at the Centre d'Etudes de Gramat, 
France. 

A.  Validation of a Computational Blast Valve Model 

One of the basic research efforts at the Ballistic Research Laboratory 
(BRL) is to computationally model shock tube processes. The BRL quasi- 
one-dimensional (Q1D) code is an adlabatic, inviscid Eulerian computer 
algorithm adapted by BRL for this purpose. A good description of 
the BRL Q1D computer algorithm was reported by Coulter, Bulmash and 

Kingery and will be repeated here for completeness. 

2 
C.J.S.M. Simpson, T.R.D. Chandler, and K.B. Bridgman, "Effect on Shock 
Trajectory of the Opening Time of Diaphragms in a Shock Tube," Phys. 
Fluids, Vol. 10, No. 9, September 1967, pp. 189^-1896. 

3 
E.M. Rothkopf and W. Low, "Diaphragm Opening Process in Shock Tubes," Phys. 
Fluids, Vol. 17, No. 6, June 1974, pp. 1169-1172. 

4 
F.L. Curzon and M.G.R. Phillips, "Low Attenuation Shock Tube: Driving 
Mechanism and Diaphragm Characteristics," Canadian Journal of Physics, Vol. 
49, 1982, pp. 1982-1993. 

5 
Takefuml Ikui and Kazuyasu Matsuo, "Investigations of the Aerodynamic 
Characteristics of the Shock Tubes," Bull. JSME.. Vol. 12, No. 52, 1969, 
pp. 774-782. 

6 
G.A. Coulter, G. Bulmarsh, and C.N. Kingery, "Experimental and 
Computational Modeling of Rarefaction Wave Eliminators Suitable for the BRL 
2.44 m Shock Tube," ARBRL-TR-02503, U.S. Army Ballistic Research 
Laboratory, Aberdeen Proving Ground, Maryland, June 1983.  (AD A131 894) 



The Euler equations for conservation of mass, momentum, and energy per 
unit volume are solved in differential form for the field variables: 
density, pressure, temperature, total energy, and a one-dimensional 
component of flow velocity using finite differencing formulations attributed 

to Beam7 and Warming.  The ideal gas equation of state. Equation 1, and the 
Euler equations. Equation 2, are applied to a shock tube. 

(7-1) (e-1/2pu ), (1) 

a(pA) 
3t ax (puA) = 0, (2-a) 

91^1   9 t^ + pU] 
at   ax 

p ^— =0, and ax 
(2-b) 

a(eA) 
at ax [uA(e+p)] = 0, (2-c) 

where p = pressure,7 is the ratio of specific heats, e = total 
energy/volume, p = density, u = flow velocity, A = tube cross-sectional 

area, t = time, and x = distance. 

The initial conditions are non-dimensionalized.  Variables at the closed 
end of the tube, i.e., the compression chamber backwall are computed using 
image points.  Variables of the open end are calculated by using backward 
differencing. 

Independent variables (x,t) are transformed into a computational grid 
and the governing equations are solved at one-dimensional spacial grid 
points (x) as a function of time.  Refer to Figure 1, a sketch of a 
computational shock tube. The distribution and total number of grid points 
are established as computer input parameters.  Typically, the number of 
spacial grid points varies from 100 - 1000 with 400 - 800 providing adequate 
results. 

R. Beam and R.F. Warming, "An Implicit Factored Scheme for the 
Compressible Navier-Stokes Equations," AIAA Paper 77-645, 1977. 

R.F. Warming and R. Beam, "On the Construction and Application of Implicit 
Factored Schemes for Conservation Laws," SIAM-AMS Proceedings, Vol. 11, 
Proceeding of the Symposium on Computational Fluid Mechanics, New York, 
1977. 



Diaphragm 

Grid Points 

(100-1000) 

Figure 1.  Sketch of a Computational Shock Tube. 

The computational grid may be equldlstantly partitioned along the tube 
length or cells may be clustered about a specified location utilizing a 
hyperbolic function incorporated in the code. Thus, a proportionally large 
number of grid points may be positioned where cross-sectional area changes 
occur. 

The BRL Q1D computer program treats the opening process of a 
diaphragm/blast valve as instantaneous. This implies the diaphragm/blast 
valve separating two compartments of the tube opens instantaneously, and at 
that moment a shock front is formed with a finite strength which is 
determined by initial conditions.  However, as described before, the real 
opening process takes a finite amount of time.  In order to simulate this 
condition, the BRL Q1D code was modified so that the diaphragm/blast valve 
was represented by a parabolic area contraction that linearly opened in 
time. 

The valve opening was modeled by assuming that the smallest throat area 
is a linear function of time.  This is an approximation to the actual 

opening function for a diaphragm as reported by Rothkopf and Low.  A 
literature search did not reveal any opening functions reported for blast 
valves, therefore a linear opening function was assumed to be acceptable. 
It seemed judicious to model the two devices in the same manner to reduce 
the analytical formulation and the computational coding changes for the BRL 
Q1D code. The analytical formulation for the coding changes is presented in 
Appendix A. 

10 



In the computer simulation, the time dependent opening of the parabolic 
area contraction causes continuous compression waves to emanate from the 
diaphragm/blast valve during the opening process.  These compression waves 
accelerate and coalesce so that the shock front eventually attains a 
maximum shock velocity at some distance down the shock tube, similar to the 
experimental situation. The formation distance is then discerned from 
Pressure-distance profiles and Pressure-time histories.  As a check on the 
computational model, comparisons are made between shock formation distances 
reported in an experiment on diaphragm opening processes and the distances 
generated by the modified hydrocode with the experimental conditions as 
input. 

Experimental work on diaphragm opening processes and shock formation 
2-5 

distances has been published in a number of articles.    Of these papers, 
"Effect on Shock Trajectory of the Opening Time of Diaphragms in a Shock 

2 
Tube" by Simpson et. al.  was chosen to provide experimental data for 
comparison with the modified BRL Q1D code. This reference was chosen 
because a thorough investigation of diaphragm effects was made for a variety 
of operating conditions. 

The experimental study was conducted in a shock tube with a rectangular 
low pressure section of internal dimensions 5.1 by 7.6 cm, and length 3.7 m 
and a high pressure section of 10.8 cm internal diameter and length 1.9 m, 
followed by a 15 cm long shape-change section.  Driver gas with pressures 
ranging from 3 to 140 atm and a rectangular diaphragm aperture (5.1 x 7.6 
cm) with diagonally scribed diaphragms of aluminum, copper, brass, and 
nickel were used.  The opening time was obtained by measuring the time 
interval between breaking a wire across the diaphragm and subsequent contact 
of a petal with the shock tube or by observing the intensity of light 
transmitted through the diaphragm during the opening process. 

After measuring a large number of shock trajectories, Simpson et. al. 
concluded that the distance (X„) to the maximum shock velocity (S ) depends 

i m 

upon the diaphragm opening time (t ) according to the following expression: 

X^. = K S t ,    where K « 2. 
f     mo 

Figure 2 graphically presents this result.  As mentioned previously, a 
comparison is made between the shock formation distances reported in this 
experiment and the distances generated by the modified hydrocode.  This 
comparison is presented in the Results section. 

B.  Blast Valve Modeling for the Large Shock Tube at Centre d'Etudes de 
^ramat. 

The suitability of using a blast valve to replace diaphragm-breaking was 
computationally determined for a 1-dimensional model (Figure 3) of the large 
shock tube at the Centre d'Etudes de Gramat (CEG), Gramat, France.  The CEG 
shock tube's rarefaction wave eliminator was not computationally modeled. 
Instead a sufficiently long driven section was used so that reflected 
rarefaction waves from the open end did not affect the shock formation 
process. 

11 
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DRIVEN  SECTION- 

DIAPHRAGM 

\MULTIPLL 
^DRIVERS 

1-D   COMPUTATIONAL   MODEL 

DRIVER 

TEST SECTION 

\r   RAREFACTION 
WAVE 
ELIMINATOR 

Figure 3.  Blast Simulator at Gramat, France; Experimental and 
Computational Model0 
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This particular configuration is of interest because BRL is currently 
considering the feasibility of constructing a large blast thermal simulator 
(LB/TS) in the United States. The LB/TS will simulate blast loading on 
either full scale targets or large scaled models. The large shock tube at 

the Centre d'Etudes de Gramat was built for this type of work.     Thus,. 
BRL is using the CEG facility as a prototype for the LB/TS, while 
considering modifications such as thermal capabilities and a larger 
cross-sectional area driven section. The CEG facility utilizes large 
diaphragms («2' diameter), however, because of the diaphragm problems 
described in the introduction, a blast valve is another modification under 
consideration for the LB/TS. 

The CEG shock tube dimensions were used as input to the 1-D computa- 
tional diaphragm/blast valve model. Shock formations for a 235 kPa (34 psi) 
and a 29-5 kPa iH.3  psi) overpressure (excess pressure over ambient) shock 
and various valve opening times were examined from pressure-time histories. 
The main purpose of this phase of the study was to determine the effect of 
blast valve opening times on the incident shock before its arrival at test 
station 7 for the above operating conditions. Station 7 is located seven 
driven section diameters downstream from the end of the diverging nozzle and 
is the primary testing station for the CEG facility and the proposed LB/TS. 

III.  RESULTS AND DISCUSSION 

A. Comparison of Computational Blast Valve Modeling to Experimental 
Results. 

Initial conditions obtained from experimental shock tube runs by Simpson 
, 2 

et. al. were used as input to the modified BRL Q1D code. The Initial 
conditions and resulting code-generated shock formation distances are shown 
in Table 1. From this data. Figure 2 was amended as shown in Figure 4. 
Figure 4 provides a graphical representation of shock formation distances 
versus diaphragm opening times. The experimental data are shown as well as 
the values obtained from the 1-dimensional computational diaphragm/blast 
valve runs. Comparison of the experimental and computational data indicates 
good agreement. 

9 
J.R. Crosnier and J.B. Monzac, "Large Diameter High Performance Blast 
Simulator," Proceedings of the Fifth International Symposium on Military 
Applications of Blast Simulation, Stockholm, Sweden, May 23-26, 1977. 

10, „ „ 
J.R. Crosnier, S. Gratias, J.B. Monzac, and H. Richard, "Concepts and 
Design for a Large Diameter High Performance Blast Simulator," Proceedings 
of the Fourth International Symposium on Military Applications of Blast 
Simulation, Southend-on-Sea, England, September 9-12, 1974. 

11 
H.-G. Amann, "Theoretical and Experimental Investigations for the Driving 
Mechanism of a Large-Diameter Shock Tube," Proceedings of the Fourth 
International Symposium on Military Applications of Blast Simulation, 
Southend-on-Sea, England, September 9-12, 1974. 

14 
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Table 1. Initial Conditions and Shock Formation Distance 
for Simpson et al. Shock Tube Configuration. 

P, (PS il) t 
op 

(MS) P4 

Pl 

Xf (m) Xf (s) 

"s 

400 300 27.2 .372 .0006 

223 noo 15.15 .543 .0009 
138.5 500 9.42 .52 .0009 
100 600 6.80 .686 .0012 

Therefore, the 1-dimensional computational diaphragm/blast valve model 
appears to satisfactorily model the opening process and subsequent shock 
acceleration for diaphragms and blast valves. 

B.  Results of Blast Valve Modeling for Centre d'Etudes de Gramat Shock 
Tube Configuration. 

Figure 5 displays experimental and computational data for the 1-D CEG 
shock tube. Distance to maximum shock velocity is plotted against blast 
valve opening times. The straight lines represent the expression X„ = 2 S 

f m 
t    for a 34.47 kPa  (5 psi)  overpressure waveform  (S    - 593 m/s)  and for a 

o m „ 
241.32 kPa  (35 psi)  overpressure waveform  (S    - 387 m/s).     Simpson et.  al. 

m 
formulated this expression from experiments as a guide for predicting shock 
formation distances in a straight driven section. Of course, the driven 
section of the CEG shock tube is "non-straight," therefore these lines are 
only Included as a reference. 

In Figure 5, the x's and o's represent shock formation distances 
measured from the diaphragm. The x represents valve opening times and 
distances where the incident shock was considered unacceptable from 
pressure-time histories while the o represents opening times and distances 
where the incident shock was acceptable. The primary shock is considered 
acceptable if the overpressure and the time of arrival of the peak are 
within 15$ of their final valves and if the incident's shock's rise time is 
Increased no more than 8 ms over the rise time computed for an Instantaneous 
blast valve opening.  In the BRL Q1D code, artificial viscosity coupled with 
grid spacing computationally smears shocks. Thus, the rise times computed 
for the instantaneous blast valve openings are not real but are the result 
of the code's inability to model discontinuous shocks. 

To illustrate the acceptability criterion for a shock. Figure 6 shows 
pressure-time histories at various test stations in the tube for a 235 kPa 
(34 psi) overpressure shock and a blast valve opening time of .05 s. The 
waveforms typically show a sharp pressure increase early in time, the 
primary shock, a decaying pressure region caused by rarefaction waves from 
the drivers, and sometimes a sharp pressure decrease later in time, a 
backward facing shock. The backward facing shock originates from the 
overexpanded diverging nozzle, and is sometimes swept downstream as a result 
of the low back pressures in the driven section.  In Figure 6 one notes the 
shock is not acceptable at x stations located at 33 m and 65.2 m, but is 
acceptable for an x station located 75.8 m downstream of the blast valve. 

15 
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4-P% 
PRESSURE TIME HISTORY 

X 5TA :33 m 
TOP = .05 s 

TIME  DELAY 49% 
OVERPRESSURE   DEFICIT 60% 
RISE TIME   12 ms 

0.8 

X 5TA = 65.2m 
TOP; .05s 

TIME DELAY 31% 
OVERPRESSURE DEFICIT 21% 
RISE TIME 6 ms 

1.0 

0.8 
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TOP = .05 s 

TIME DELAY 14% 
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RISE TIME 6 ms 
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J_ 

Figure 6. 

0.4        0.6        0.8 
TIME(s) 

Pressure-Time Histories for a 235 kPa Overpressi.re 
Shock at Various X Stations and a Blast Valve 
Opening Time of .05 s. 
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Furthermore, Figure 7 shows pressure-time histories for a 235 kPa (34 
psi) overpressure shock at x station at 75.8 m for a nearly instantaneous 
valve opening time (top = .0035) and a very long valve opening time (top = 
.105). Comparing these to x station at 75.8 m for a valve opening time of 
.05 s. Figure 5, one notices that there is very little difference between the 
nearly instantaneous valve opening time waveform and the .05 s valve opening 
time waveform. The shock is considered acceptable in both cases. However, 
above 0.5 s, waveforms more similar to the .10 s valve opening time P-t 
history are obtained at x station at 75.8 m.  These waveforms show a 
compression wave passing the x station.  Although, this condition might be 
desirable for some simulation purposes (such as the precursor of a nuclear 
shock), it is not desirable for a shock simulator. 

Figures 8 and 9 present pressure-time histories for a 29.5 kPa (4.3 psi) 
overpressure shock at various x stations and for various blast valve opening 
times.  From Figure 8, one notes an acceptable waveform occurs at 65 meters 
for a blast valve opening time of 52.5 ms.  Consulting Figure 5, it is 
reasonable to predict a well formed 29.5 kPa overpressure shock before test 
station 7 (75.8 m downstream) for blast valve opening times less than 
approximately 55 ms. 

Figure 9 presents pressure-time histories for a 29.5 kPa (4.3 psi) 
overpressure shock at x station equal to 75.8 m for various blast valve 
opening times.  Note that for a blast valve opening time of .07s, the shock 
is no longer acceptable.  For a blast valve opening time of .0354s the shock 
is nearly identical to the shock produced by an instantaneous blast valve 
opening except for the rise time of 7 ms. The rise time for the 
instantaneous case is 5 ms.  The waveform has obtained a spike that 
effectively increases the peak overpressure from 29.5 kPa to 34 kPa. 

For similar initial conditions, a spike is also observed experimentally, 
therefore it is a real phenomenon that occurs with the CEG facility. 
However, the spike is undesirable because it unsatisfactorily alters the 
waveform. The waveform is meant to represent the ideal, classical 

12 
exponentially decaying wave that results from a surface burst.   Figures 8 
and 9 show that an acceptable shock can be produced for a 29.5 kPa 
overpressure shock without a spike if one opens the blast valve slowly 
enough. 

Referring to Figure 5 again, the x's and o's represent the accumulation 
of the acceptable and unacceptable shock formation distances from the 
pressure-time histories.  In order to obtain acceptable shock formations 
less than 75 meters (the distance to the primary testing station). Figure 5 
shows for the 29.5 to 235 kPa (4.3 to 34 psi) overpressure range that the 
blast valve opening times must be less than approximately 50 milliseconds. 

12 
A. Mark, "Numerical Simulation of the Gas Dynamic Cycle of Complex, 
Large-Scale Shock Tubes," Transactions of the Twenty-Seventh Conference of 
Army Mathematicians, ARC Report 82-1. 
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IV.  CONCLUSIONS 

This report examined the posslbllty of using a fast acting (blast) valve 
to replace diaphragm breaking in a shock tube. This was accomplished by 
successfully modeling the diaphragm/blast valve opening process with a 
modified verison of the BRL Q1D code. The computational diaphragm/blast 
valve model was in satisfactory agreement with experimental data. 

For the one dimensional model of the Centre d' Etudes de Gramat shock 
tube, it was determined with the computational diaphragm/blast valve model 
that a blast valve which opens in less than 50 milliseconds approximates 

shocks within these limitations; 

a) Peak overpressure is within 15%  of its final value 

b) Time of arrival of peak is within 15%  of its final value 

c) Rise time of incident shock is increased no more than 8 ms from 
the instantaneous case. 

A shock with these characteristics is acceptable for simulating 
shock/target interactions where the primary damage mechanism is overturning 
or whole-body displacement through drag loading.  A blast valve which opens 
in less than 50 milliseconds should produce a shock meeting the above 
criterion before the primary testing station located 75 meters downstream. 

A continuation of this study is needed to determine the blast valve 
opening times required to produce a simulated blast wave with a fully formed 
discontinuous shock front. Such a blast wave is required for producing the 
maximum loading on targets during the initial diffraction loading period. 

An assumption made for this blast valve study was an area opening 
function that was linear in time. Therefore, another continuation of this 
study might address different blast valve opening functions, possibly even 
opening functions for real blast valves, if the data can be obtained. 

Also, an unexpected result of this blast valve study was the observation 
that for lower pressure shots, a blast valve that opens slowly enough will 
degrade the spikes that are present computationally and experimentally in 
the pressure-time histories.  The problem then is to find such a blast valve 
opening time and driver pressure ratio combination for which the spike is 
degraded, but the desired overpressure peak is retained. The BRL Q1D code 
provides the capability of doing such a parametric study at relatively 

little cost. 
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Appendix A 
Analytical Formulation of Diaphragm/Valve Opening 
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The diameter in the throat area is 
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The opening process is modeled by making D the following function of time; 
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